Basic information
Entrez ID Official symbol Synonyms Description Location Type of protein External annotation
7454 WAS IMD2, SCNX, THC, THC1, WASP, WASPA WASP actin nucleation promoting factor Xp11.23 protein-coding Genecard
Summary
uniprot_summary refseq_summary
Effector protein for Rho-type GTPases. Regulates actin filament reorganization via its interaction with the Arp2/3 complex. Important for efficient actin polymerization. Possible regulator of lymphocyte and platelet function. Mediates actin filament reorganization and the formation of actin pedestals upon infection by pathogenic bacteria. The Wiskott-Aldrich syndrome (WAS) family of proteins share similar domain structure, and are involved in transduction of signals from receptors on the cell surface to the actin cytoskeleton. The presence of a number of different motifs suggests that they are regulated by a number of different stimuli, and interact with multiple proteins. Recent studies have demonstrated that these proteins, directly or indirectly, associate with the small GTPase, Cdc42, known to regulate formation of actin filaments, and the cytoskeletal organizing complex, Arp2/3. Wiskott-Aldrich syndrome is a rare, inherited, X-linked, recessive disease characterized by immune dysregulation and microthrombocytopenia, and is caused by mutations in the WAS gene. The WAS gene product is a cytoplasmic protein, expressed exclusively in hematopoietic cells, which show signalling and cytoskeletal abnormalities in WAS patients. A transcript variant arising as a result of alternative promoter usage, and containing a different 5 UTR sequence, has been described, however, its full-length nature is not known.
Assessment table
Flase
Caregory Description Value Value range ( Low - High ) Comment
PLI The probability of being loss-of-function (LoF) intolerant 0.991 [0, ..., 1] Genes with high pLI scores (pLI ≥ 0.9) are extremely LoF intolerant, whereby genes with low pLI scores (pLI ≤ 0.1) are LoF tolerant. The score is calculated based on high-quality exome sequence data (ExAC) for 60,706 individuals of diverse ethnicities.
Haploinsufficiency (HI) score rank Predicted probability of exhibiting haploinsufficiency [100, ..., 1] High ranks (e.g. 0-10%) indicate a gene is more likely to exhibit haploinsufficiency, low ranks (e.g. 90-100%) indicate a gene is more likely to NOT exhibit haploinsufficiency (DECIPHER, PMID: 20976243). haploinsufficiency means a single functional copy of a gene is insufficient to maintain its normal function and is extremely intolerant of LoF variation.
Gene brain expressed Queried gene is expressed in brain tissues True [False, True] The gene expression data are extracted from GTEx v7 and BrainSpan. A gene with the expression value of (log 2 based (TPM+1)) at least 1 TPM/RPKM/FPKM in one or more tissues related to the brain is considered brain-expressed.
Protein brain expressed Queried protein is expressed in brain tissues[False, True] The protein expression data are extracted from ProteomicsDB (v2018.09). A protein with the expression value of (log based 10 (iBAQ intensity)) at least 0.5 in one or more tissues related to the brain is considered brain-expressed protein.
Carrying LoF DNMs Number of loss-of-function DNMs hit the queried gene 0
(Case)
[0, ..., 67] with average of 0.160 Loss of function (LoF) mutations include frameshift indels, nonsense (stop-gained) and splice-site mutations, which can result in the gene product having less or no function and can have deleterious consequences.
0
(Control)
[0, ..., 6] with average of 0.044
Carrying missense DNMs Number of missense DNMs hit the queried gene 0
(Case)
[0, ..., 55] with average of 0.846 Missense mutations can result in changes in protein sequences, but are commonly considered to have less deleterious impacts than LoF mutations.
0
(Control)
[0, ..., 21] with average of 0.300
FMRP binding targets FMRP inteacting parters False [False, True] FMRP loss of function causes Fragile X syndrome (FXS). The binding targets identified crosslinking immunoprecipitation (HITS-CLIP) in mouse brains (PMID:21784246). Many FMRP targets are among genes implicated in different neuropsychiatric diseases, such as autism, schizophrenia.
Postsynaptic density (PSD) Protein associates with postsynaptic membranes of excitatory synapses False [False, True] Abnormalities with PSD proteins are linked to various neuropsychiatric diseases including neurodevelopmental disorders.
Human essential genes - False [False, True] Genes are thought to be critical for human survival.