Basic information
Entrez ID Official symbol Synonyms Description Location Type of protein External annotation
5339 PLEC EBS1, EBSMD, EBSND, EBSO, EBSOG, EBSPA, HD1, LGMD2Q, LGMDR17, PCN, PLEC1, PLEC1b, PLTN plectin 8q24.3 protein-coding Genecard
Summary
uniprot_summary refseq_summary
Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. Plectin is a prominent member of an important family of structurally and in part functionally related proteins, termed plakins or cytolinkers, that are capable of interlinking different elements of the cytoskeleton. Plakins, with their multi-domain structure and enormous size, not only play crucial roles in maintaining cell and tissue integrity and orchestrating dynamic changes in cytoarchitecture and cell shape, but also serve as scaffolding platforms for the assembly, positioning, and regulation of signaling complexes (reviewed in PMID: 9701547, 11854008, and 17499243). Plectin is expressed as several protein isoforms in a wide range of cell types and tissues from a single gene located on chromosome 8 in humans (PMID: 8633055, 8698233). Until 2010, this locus was named plectin 1 (symbol PLEC1 in human; Plec1 in mouse and rat) and the gene product had been referred to as hemidesmosomal protein 1 or plectin 1, intermediate filament binding 500kDa. These names were superseded by plectin. The plectin gene locus in mouse on chromosome 15 has been analyzed in detail (PMID: 10556294, 14559777), revealing a genomic exon-intron organization with well over 40 exons spanning over 62 kb and an unusual 5 transcript complexity of plectin isoforms. Eleven exons (1-1j) have been identified that alternatively splice directly into a common exon 2 which is the first exon to encode plectins highly conserved actin binding domain (ABD). Three additional exons (-1, 0a, and 0) splice into an alternative first coding exon (1c), and two additional exons (2alpha and 3alpha) are optionally spliced within the exons encoding the acting binding domain (exons 2-8). Analysis of the human locus has identified eight of the eleven alternative 5 exons found in mouse and rat (PMID: 14672974); exons 1i, 1j and 1h have not been confirmed in human. Furthermore, isoforms lacking the central rod domain encoded by exon 31 have been detected in mouse (PMID:10556294), rat (PMID: 9177781), and human (PMID: 11441066, 10780662, 20052759). The short alternative amino-terminal sequences encoded by the different first exons direct the targeting of the various isoforms to distinct subcellular locations (PMID: 14559777). As the expression of specific plectin isoforms was found to be dependent on cell type (tissue) and stage of development (PMID: 10556294, 12542521, 17389230) it appears that each cell type (tissue) contains a unique set (proportion and composition) of plectin isoforms, as if custom-made for specific requirements of the particular cells. Concordantly, individual isoforms were found to carry out distinct and specific functions (PMID: 14559777, 12542521, 18541706). In 1996, a number of groups reported that patients suffering from epidermolysis bullosa simplex with muscular dystrophy (EBS-MD) lacked plectin expression in skin and muscle tissues due to defects in the plectin gene (PMID: 8698233, 8941634, 8636409, 8894687, 8696340). Two other subtypes of plectin-related EBS have been described: EBS-pyloric atresia (PA) and EBS-Ogna. For reviews of plectin-related diseases see PMID: 15810881, 19945614. Mutations in the plectin gene related to human diseases should be named based on the position in NM_000445 (variant 1, isoform 1c), unless the mutation is located within one of the other alternative first exons, in which case the position in the respective Reference Sequence should be used.
Assessment table
Caregory Description Value Value range ( Low - High ) Comment
PLI The probability of being loss-of-function (LoF) intolerant 0.025 [0, ..., 1] Genes with high pLI scores (pLI ≥ 0.9) are extremely LoF intolerant, whereby genes with low pLI scores (pLI ≤ 0.1) are LoF tolerant. The score is calculated based on high-quality exome sequence data (ExAC) for 60,706 individuals of diverse ethnicities.
Haploinsufficiency (HI) score rank Predicted probability of exhibiting haploinsufficiency [100, ..., 1] High ranks (e.g. 0-10%) indicate a gene is more likely to exhibit haploinsufficiency, low ranks (e.g. 90-100%) indicate a gene is more likely to NOT exhibit haploinsufficiency (DECIPHER, PMID: 20976243). haploinsufficiency means a single functional copy of a gene is insufficient to maintain its normal function and is extremely intolerant of LoF variation.
Gene brain expressed Queried gene is expressed in brain tissues True [False, True] The gene expression data are extracted from GTEx v7 and BrainSpan. A gene with the expression value of (log 2 based (TPM+1)) at least 1 TPM/RPKM/FPKM in one or more tissues related to the brain is considered brain-expressed.
Protein brain expressed Queried protein is expressed in brain tissues True [False, True] The protein expression data are extracted from ProteomicsDB (v2018.09). A protein with the expression value of (log based 10 (iBAQ intensity)) at least 0.5 in one or more tissues related to the brain is considered brain-expressed protein.
Carrying LoF DNMs Number of loss-of-function DNMs hit the queried gene 0
(Case)
[0, ..., 67] with average of 0.160 Loss of function (LoF) mutations include frameshift indels, nonsense (stop-gained) and splice-site mutations, which can result in the gene product having less or no function and can have deleterious consequences.
0
(Control)
[0, ..., 6] with average of 0.044
Carrying missense DNMs Number of missense DNMs hit the queried gene 23
(Case)
[0, ..., 55] with average of 0.846 Missense mutations can result in changes in protein sequences, but are commonly considered to have less deleterious impacts than LoF mutations.
5
(Control)
[0, ..., 21] with average of 0.300
FMRP binding targets FMRP inteacting parters True [False, True] FMRP loss of function causes Fragile X syndrome (FXS). The binding targets identified crosslinking immunoprecipitation (HITS-CLIP) in mouse brains (PMID:21784246). Many FMRP targets are among genes implicated in different neuropsychiatric diseases, such as autism, schizophrenia.
Postsynaptic density (PSD) Protein associates with postsynaptic membranes of excitatory synapses True [False, True] Abnormalities with PSD proteins are linked to various neuropsychiatric diseases including neurodevelopmental disorders.
Human essential genes - True [False, True] Genes are thought to be critical for human survival.