Basic information
Entrez ID Official symbol Synonyms Description Location Type of protein External annotation
2328 FMO3 FMOII, TMAU, dJ127D3.1 flavin containing dimethylaniline monoxygenase 3 1q24.3 protein-coding Genecard
Summary
uniprot_summary refseq_summary
Involved in the oxidative metabolism of a variety of xenobiotics such as drugs and pesticides. It N-oxygenates primary aliphatic alkylamines as well as secondary and tertiary amines. Plays an important role in the metabolism of trimethylamine (TMA), via the production of TMA N-oxide (TMAO). Is also able to perform S-oxidation when acting on sulfide compounds (PubMed:9224773). Flavin-containing monooxygenases (FMO) are an important class of drug-metabolizing enzymes that catalyze the NADPH-dependent oxygenation of various nitrogen-,sulfur-, and phosphorous-containing xenobiotics such as therapeutic drugs, dietary compounds, pesticides, and other foreign compounds. The human FMO gene family is composed of 5 genes and multiple pseudogenes. FMO members have distinct developmental- and tissue-specific expression patterns. The expression of this FMO3 gene, the major FMO expressed in adult liver, can vary up to 20-fold between individuals. This inter-individual variation in FMO3 expression levels is likely to have significant effects on the rate at which xenobiotics are metabolised and, therefore, is of considerable interest to the pharmaceutical industry. This transmembrane protein localizes to the endoplasmic reticulum of many tissues. Alternative splicing of this gene results in multiple transcript variants encoding different isoforms. Mutations in this gene cause the disorder trimethylaminuria (TMAu) which is characterized by the accumulation and excretion of unmetabolized trimethylamine and a distinctive body odor. In healthy individuals, trimethylamine is primarily converted to the non odorous trimethylamine N-oxide.
Assessment table
Flase
Caregory Description Value Value range ( Low - High ) Comment
PLI The probability of being loss-of-function (LoF) intolerant - [0, ..., 1] Genes with high pLI scores (pLI ≥ 0.9) are extremely LoF intolerant, whereby genes with low pLI scores (pLI ≤ 0.1) are LoF tolerant. The score is calculated based on high-quality exome sequence data (ExAC) for 60,706 individuals of diverse ethnicities.
Haploinsufficiency (HI) score rank Predicted probability of exhibiting haploinsufficiency [100, ..., 1] High ranks (e.g. 0-10%) indicate a gene is more likely to exhibit haploinsufficiency, low ranks (e.g. 90-100%) indicate a gene is more likely to NOT exhibit haploinsufficiency (DECIPHER, PMID: 20976243). haploinsufficiency means a single functional copy of a gene is insufficient to maintain its normal function and is extremely intolerant of LoF variation.
Gene brain expressed Queried gene is expressed in brain tissues Flase [False, True] The gene expression data are extracted from GTEx v7 and BrainSpan. A gene with the expression value of (log 2 based (TPM+1)) at least 1 TPM/RPKM/FPKM in one or more tissues related to the brain is considered brain-expressed.
Protein brain expressed Queried protein is expressed in brain tissues[False, True] The protein expression data are extracted from ProteomicsDB (v2018.09). A protein with the expression value of (log based 10 (iBAQ intensity)) at least 0.5 in one or more tissues related to the brain is considered brain-expressed protein.
Carrying LoF DNMs Number of loss-of-function DNMs hit the queried gene 0
(Case)
[0, ..., 67] with average of 0.160 Loss of function (LoF) mutations include frameshift indels, nonsense (stop-gained) and splice-site mutations, which can result in the gene product having less or no function and can have deleterious consequences.
0
(Control)
[0, ..., 6] with average of 0.044
Carrying missense DNMs Number of missense DNMs hit the queried gene 0
(Case)
[0, ..., 55] with average of 0.846 Missense mutations can result in changes in protein sequences, but are commonly considered to have less deleterious impacts than LoF mutations.
1
(Control)
[0, ..., 21] with average of 0.300
FMRP binding targets FMRP inteacting parters False [False, True] FMRP loss of function causes Fragile X syndrome (FXS). The binding targets identified crosslinking immunoprecipitation (HITS-CLIP) in mouse brains (PMID:21784246). Many FMRP targets are among genes implicated in different neuropsychiatric diseases, such as autism, schizophrenia.
Postsynaptic density (PSD) Protein associates with postsynaptic membranes of excitatory synapses False [False, True] Abnormalities with PSD proteins are linked to various neuropsychiatric diseases including neurodevelopmental disorders.
Human essential genes - False [False, True] Genes are thought to be critical for human survival.