Basic information
Entrez ID Official symbol Synonyms Description Location Type of protein External annotation
56548 CHST7 C6ST-2, GST-5 carbohydrate sulfotransferase 7 Xp11.3 protein-coding Genecard
Summary
uniprot_summary refseq_summary
Sulfotransferase that utilizes 3-phospho-5-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the transfer of sulfate to position 6 of non-reducing N-acetylglucosamine (GlcNAc) residues. Preferentially acts on mannose-linked GlcNAc. Also able to catalyze the transfer of sulfate to position 6 of the N-acetylgalactosamine (GalNAc) residue of chondroitin. Also acts on core 2 mucin-type oligosaccharide and N-acetyllactosamine oligomer with a lower efficiency. Has weak or no activity toward keratan sulfate and oligosaccharides containing the Galbeta1-4GlcNAc. Catalyzes 6-O-sulfation of beta-benzyl GlcNAc but not alpha- or beta-benzyl GalNAc. This gene is a member of the Gal/GalNAc/GlcNAc (galactose/N-acetylgalactosamine/N-acetylglucosamine) 6-O-sulfotransferase (GST) family. Members of this family encode enzymes that catalyze the specific addition of sulfate groups to distinct hydroxyl and amino groups of carbohydrates. The encoded protein catalyzes the sulfation of 6-hydroxyl group of GalNAc in chondroitin.
Assessment table
Flase
Caregory Description Value Value range ( Low - High ) Comment
PLI The probability of being loss-of-function (LoF) intolerant 0.099 [0, ..., 1] Genes with high pLI scores (pLI ≥ 0.9) are extremely LoF intolerant, whereby genes with low pLI scores (pLI ≤ 0.1) are LoF tolerant. The score is calculated based on high-quality exome sequence data (ExAC) for 60,706 individuals of diverse ethnicities.
Haploinsufficiency (HI) score rank Predicted probability of exhibiting haploinsufficiency [100, ..., 1] High ranks (e.g. 0-10%) indicate a gene is more likely to exhibit haploinsufficiency, low ranks (e.g. 90-100%) indicate a gene is more likely to NOT exhibit haploinsufficiency (DECIPHER, PMID: 20976243). haploinsufficiency means a single functional copy of a gene is insufficient to maintain its normal function and is extremely intolerant of LoF variation.
Gene brain expressed Queried gene is expressed in brain tissues True [False, True] The gene expression data are extracted from GTEx v7 and BrainSpan. A gene with the expression value of (log 2 based (TPM+1)) at least 1 TPM/RPKM/FPKM in one or more tissues related to the brain is considered brain-expressed.
Protein brain expressed Queried protein is expressed in brain tissues[False, True] The protein expression data are extracted from ProteomicsDB (v2018.09). A protein with the expression value of (log based 10 (iBAQ intensity)) at least 0.5 in one or more tissues related to the brain is considered brain-expressed protein.
Carrying LoF DNMs Number of loss-of-function DNMs hit the queried gene 0
(Case)
[0, ..., 67] with average of 0.160 Loss of function (LoF) mutations include frameshift indels, nonsense (stop-gained) and splice-site mutations, which can result in the gene product having less or no function and can have deleterious consequences.
0
(Control)
[0, ..., 6] with average of 0.044
Carrying missense DNMs Number of missense DNMs hit the queried gene 0
(Case)
[0, ..., 55] with average of 0.846 Missense mutations can result in changes in protein sequences, but are commonly considered to have less deleterious impacts than LoF mutations.
0
(Control)
[0, ..., 21] with average of 0.300
FMRP binding targets FMRP inteacting parters False [False, True] FMRP loss of function causes Fragile X syndrome (FXS). The binding targets identified crosslinking immunoprecipitation (HITS-CLIP) in mouse brains (PMID:21784246). Many FMRP targets are among genes implicated in different neuropsychiatric diseases, such as autism, schizophrenia.
Postsynaptic density (PSD) Protein associates with postsynaptic membranes of excitatory synapses False [False, True] Abnormalities with PSD proteins are linked to various neuropsychiatric diseases including neurodevelopmental disorders.
Human essential genes - False [False, True] Genes are thought to be critical for human survival.